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     An Intelligent Primitive Driver (IPD) was designed to supplement the control of a 

Primitive Driver component that is defined in the Department of Defense Joint 

Architecture for Unmanned Systems (JAUS).  Whereas the Primitive Driver component 

accepts and blindly executes wrench commands, the IPD uses various subsystems to 

provide it with the necessary information to make low-level decisions concerning vehicle 

control.  The IPD is accessible by either an onboard autonomous control system; or by a 

tele-operational control system.  Tele-operational control (teleop) is characterized by the 

direct control of a platform by a human operator.  For the case of an autonomous control 

system, the IPD reduces high-level control responsibilities; and therefore reduces 

processor demands.  In the case of teleop control, the IPD serves to ease operator burden 

by automating intensive operator-controlled processes.   

     The test platform for the functionality of the Intelligent Primitive Driver was a 

Remotec ANDROS robot.  In the case of the ANDROS robot, the IPD automates the 

process of maneuvering up or down a flight of stairs.  
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CHAPTER 1 
INTRODUCTION AND BACKGROUND 

1.1 Introduction 

The purpose of this research was to design and develop an experimental intelligence 

component based on the Joint Architecture for Unmanned Systems (JAUS), currently 

being developed in concert with the Department of Defense.  This component will be 

designated the Intelligent Primitive Driver (IPD) and will allow for assisted tele-

operational (teleop) control of a platform.  Teleop control can be defined as the control of 

a vehicle or robot by the direct input of a human operator.  Assisted teleop is based upon 

this concept, but includes additional computer control to supplement the operator’s 

control; intensive control procedures were automated to ease the burden on the operator.  

The IPD accomplished this task by having direct control of any and all actuators that 

directly affect the motion of the platform.  A Remotec Andros robot, outfitted with a 

JAUS-compliant controller, was used to test the viability of the IPD.  In the case of the 

Andros, the IPD automated the complicated stair ascending and descending operations.   

1.2 Background 

1.2.1 Assisted Teleop Control 

The human-machine relationship has always been clearly defined: machines are 

controlled by humans and are constructed to ease the burdens of human life.  However, 

two recently developing factors have begun to dramatically change this relationship.  

1 
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First, an increase in computing power and system reliability along with a decrease in size 

and power requirements of modern control systems have made possible the shift of some 

control responsibility from the human operator to the controller itself.  Bayouth and 

colleagues [1] (of the Robotics Institute of Carnegie Mellon University) constructed an 

autonomous roadway vehicle that demonstrated lane following, speed and heading 

compliance, and obstacle avoidance in an effort to increase vehicle safety and mobility.  

Several other groups have also worked on the “Intelligent Cruise Control” concept.  The 

Mustererkennung und Szenenanalyse Pattern Recognition and Scene Analysis (MESA) 

research group [2] have developed behaviors (such as tracking a lead vehicle or lane 

changing) that comprise a basic control set on which more complicated procedures are 

based.  Schlegel [3], in his thesis, “Autonomous Vehicle Control using Image 

Processing,” tested the intelligent cruise control notion through the use of scale models 

coupled with a remote control station aimed at emulating full-scale vehicle controls. 

The second factor that has influenced the human-machine interface is the growing 

complexity of the platforms being automated and the tasks they are able to perform.  

Connell and Viola [4] (of the IBM T.J. Watson Research Center) have a novel way of 

describing the problems with traditional platform control systems:  

“Consider the differences between riding a horse and driving an 
automobile. A horse will not run into a telephone pole at high speed.  If 
you fall asleep in the saddle, a horse will continue to follow the path that it 
is on.… In general, horses are much smarter than automobiles and thus 
provide a better model for control of a mobile robot.” [4] 

 
Connell and Viola constructed a platform and control system that cast the operator as an 

agent in the control system, able to input commands into the arbitration network, as well 

as a high-level command language that was able to shut out individual control agents.  
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Huntsberger and Rose [5], of the Jet Propulsion Laboratory (JPL) and the University of 

South Carolina (USC), respectively, are working on a behavior-based control system 

named BISMARC, or the Biologically Inspired System for Map-based Autonomous 

Rover Control, for use with the Mars rover platforms.  They utilize a form of path 

planning that is derived from the study of human navigation through complex 

environments. 

1.2.2 Stair Climbing 

For mobile robotic platforms to be useful in urban environments, they need to be able 

to easily traverse commonly found terrain features, such as stairways. Several detection 

methods are used to enable platform navigation on these non-continuous planar structures 

(such as vision-based positioning and edge detection, laser-based edge detection, and the 

fusion of several sensor systems).  Others have solved the dilemma by manipulating the 

physical characteristics of the platform to suite the special needs of a stair-climbing 

vehicle. 

Matthies, et al. [6] constructed a small mobile platform capable of performing 

reconnaissance duties in urban situations.  To meet the stair climbing requirements 

associated with this detail, a vision-guided navigation and detection system was 

implemented on the robot.  A stereovision system was used to detect the forward edges of 

individual steps.  This information was used to derive the angle of rotation between the 

robot and the stairway; and to ensure that the robot was accurately following the stair 

heading.   

Lewis and Simo’ [7] (Iguana Robotics, Inc.) built a bipedal platform based on the 

biomorphic concept capable of stair travel (Figure 1-1).  Basically, a biomorphic robot 

attempts to mimic the sensory capabilities of animals; sensory input is predicated upon 
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voluntary movement of the platform and must be distinguished from possible inputs 

produced by the platform itself.  The platform fused stereovision; and tactile and pressure 

sensors to build an accurate data model of the terrain to traverse.  

Another application of the biomorphic concept is the work of Talebi, et al. [8].  They 

constructed a quadruped platform that has only one actuator per leg coupled with 

compliant prismatic joints.  Therefore, as an animal would, the platform climbs a stair 

dynamically.  As the leg contacts the stair, ground forces cause the joint spring to 

compress; and the effective length of the leg is reduced.   

Perhaps the most stable solution for the stair-climbing problem, when the 

development of the platform permits, is to tailor the geometry to accommodate the stair 

climbing motion.  Lauria, et al. [9] took this approach in developing their vehicle, 

Octopus.  The platform consists of eight motorized, tactile wheels and a tilt sensor; and 

has a total of fifteen degrees of freedom.  The platform geometry allows for all eight 

wheels to be in contact with the ground at all times, regardless of the terrain profile; 

allowing for relatively simple travel of the platform across any uneven terrain, stairways 

included. 

1.3 The Joint Architecture for Unmanned Systems (JAUS) 

This section provides a functional description of the Joint Architecture for Unmanned 

Systems (JAUS).  The technical constraints on the architecture, system topology, 

standard component definition, and the JAUS message will be discussed. 

1.3.1 Overview 

The JAUS architecture is being developed in conjunction with the Department of 

Defense in support of unmanned vehicle systems development and provides a means for 

reducing system life-cycle costs by offering a well-defined component interface.  This 
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interface allows for the future reuse of expensive components in developing autonomous 

systems and also allows for the quick exchange of malfunctioning or outdated 

components in current autonomous systems.  Further, the engineer is free to place all 

available resources into obtaining optimal performance from the component as its 

interface is predefined [10]. 

The JAUS architecture is divided into three separate volumes: the JAUS Domain 

Model, Document Control Plan, and Reference Architecture.  The JAUS Domain Model 

defines both known and prospective operational requirements of unmanned systems, 

while the Document Control Plan describes the procedure used to recognize and track 

changes to accepted JAUS documents.  This work will focus solely upon the Reference 

Architecture as it is concerned with aspects of component design.  The reference 

architecture defines components, messages and standards that classify a system paradigm, 

which allows for the assimilation of distributed system architectures.  The reference 

architecture is comprised only of components and messages that have been technically 

evaluated by the tech base, academia, or an industry source and whose implementation is 

thoroughly understood.  Therefore, the incorporation of components, their classification, 

and their corresponding messages is an evolutionary process [10]. 

There are four technical constraints, which have been levied upon the JAUS 

architecture to ensure that it may be freely applied to any classification of unmanned 

system.  These constraints are platform independence, mission isolation, computer 

hardware independence, and technological independence.  To be platform independent, 

no assumptions concerning vehicle platforms to be automated will be incorporated into 

the definition of any JAUS component.  The JAUS architecture defines a mission as the 
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ability to gather information about or to alter the state of the environment in which the 

platform is operating.  Therefore, the mission isolation constraint is intended to allow the 

engineer to construct systems that can support a variety of missions, not just a single one.  

The computer hardware independence constraint insists that the component be designed 

independent of the computer system upon which the component will run.  This was 

included in the architecture so that currently used components can be applied to future 

computer systems without modification to the component.  This allows new computer 

architectures to be easily inserted into current systems, extending its life cycle.  This also 

allows for hardware flexibility, as the appropriate hardware may be applied to each 

system.  Finally, technological independence is similar to computer hardware 

independence, but instead deals with the action to be performed by the component instead 

of the system that is performing the action.  This constraint basically states that the 

architecture will make no assumptions concerning the method by which an action is 

performed.  For example, in a JAUS compliant position system, no assumptions are made 

concerning the method in which the vehicle position is obtained.  Any method of 

obtaining vehicle position is allowable, from a Global Positioning System (GPS), dead 

reckoning, inertial measurement, a vision based position system, or any subsequent 

positioning system [10]. 

1.3.2 System Topology 

There are four elements, which comprise the hierarchy of the JAUS architecture: the 

System, Subsystem, Node, and Component/Instance.  A System is a logical grouping of 

one or more Subsystems, which have been grouped such that beneficial cooperation 

between the Subsystems can be achieved.  A Subsystem is a distinct organism, which is 

comprised of any number of Nodes necessary to form a complete unmanned system.   A 
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Node is a distinct entity, comprised of a single processor or multiple processors working 

in conjunction with each other, to provide a complete service.  Finally, a Component is a 

cohesive software process, which runs on a Node.  An Instance is a single occurrence of a 

Component running on a Node.  Several Instances of the same Component may run on a 

single Node, and are delineated by unique addresses.  Figure 1-1 illustrates the interaction 

of these four levels [10] . 

SYSTEM

Subsystem Subsystem Subsystem

Node Node Node Node

Comp1, Inst1 Comp2, Inst1 Comp2, Inst2 CompN, Inst1

Figure 1-1:  Architecture hierarchy (used from JAUS: Reference Architecture 
Specification, pg. 12) 

1.3.3 The JAUS Component 

As JAUS is a hierarchical system of components with standardized interfaces, the 

JAUS Component is a strictly defined entity.  A distinct name and identification number 

defines a JAUS Component and every JAUS Component shall perform a single, cohesive 

function. Each Component must be able to accept and act upon the set of core JAUS 

command codes, as well as the input and output codes specific to the individual 

Component itself.  A list of the core JAUS command codes may be found in Appendix A  

[10].   

1.3.4 The JAUS Message 

A JAUS message is comprised of two distinct components: the message header and 

the message data buffer.  The message header completely defines the message’s 
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destination node, component, instance and subsystem identification, and the message’s 

corresponding source information.  The message header also consists of the JAUS 

command code, the number of bytes in the data buffer that the destination component can 

expect to receive, and information pertaining to the message properties, such as the JAUS 

architecture version being used.  The message header data is found in Table 1-1 while the 

bit field layout for the message properties can be seen in Figure 1-2.  

Table 1-1: Message header data format (used from JAUS: Reference Architecture              
Specification, pg. 54) 

Field # Field Description Size (Bytes) 
1 Message properties 2 
2 Command code 2 
3 Destination instance ID 1 
4 Destination component ID 1 
5 Destination node ID 1 
6 Destination subsystem ID 1 
7 Source instance ID 1 
8 Source component ID 1 
9 Source node ID 1 
10 Source subsystem ID  1 
11 Data control (bytes) 2 
12 Sequence number 2 

 Total Bytes 16 
 

The message data buffer is composed of packed JAUS control data.  Each command 

code has control data associated with it that is used by the system to command 

component behavior.  In an effort to reduce the size of the JAUS messages being 

transmitted, and therefore reduce the required bandwidth of the system, the message data 

is compressed before being transmitted.  To accommodate this, the JAUS code library for 

 



9 

each component and its subsequent command codes must have the ability to pack and 

unpack the control data.  
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Figure 1-2:  Message header properties bit layout (used from JAUS: Reference 
Architecture Specification, pg. 54) 

 



 

CHAPTER 2 
TEST PLATFORM DEVELOPMENT 

To investigate the Intelligent Primitive Driver, a test platform first needed to be 

outfitted with a JAUS compliant control system.  Due to the availability of indirect 

motion actuators on the system and its relatively complicated stair climbing procedures, a 

Remotec Andros robot was chosen for this task. 

2.1 Remotec Andros Robot 

Figure 2-1 depicts the Remotec Andros robot.  As stated in the instruction manual, the 

primary design purpose of the Andros is “to provide an effective means for remote 

Explosive Ordnance Disposal (EOD)… Andros robots are currently used to remotely 

perform a variety of hazardous work tasks including explosive handling, tactical support 

operations, and nuclear plant maintenance” [11].  

 

Figure 2-1:  Remotec Andros robotic platform 

The robot consists of a main chassis, front and rear sets of auxiliary tracks, and the 

main arm assembly.  The tracks are made of Kevlar belts with molded internal and 

external urethane cleats.  The auxiliary tracks are able to swing from +85 degrees to –65 

10 
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degrees relative to the horizontal position.  The drive motors are able to propel the 

Andros up forty-five degree slopes or stairs and can maintain the vehicle’s position upon 

a slope through dynamic braking.  The physical dimensions of the Andros are seen in 

Figure 2-2 [11]. 

Figure 2-2:  Andros physical dimensions 

Figure 2-3 depicts the native Andros controller.  Upon power up of the Andros 

system, the native control transmits an initialization string to the Andros’ embedded 

controller and then begins the continuous output of the control data.  The Andros’ 

embedded controller will only enter the “ready” state and accept platform control data if 

the initialization string is properly sent and the control data is received at a maximum 5 

Hz frequency.  The controller uses a proprietary serial control stream to communicate 

with the Andros’ embedded controller.  The update frequency is the absolute maximum 

rate at which any controller may update the control data being sent to the Andros and 

therefore alter the Andros’ intended motion.   

32” 28”32” 28”

To use the Andros robot as the test platform for the IPD system, the JAUS control 

system implemented on the Andros had to be completely removable from the system so 

that the native Andros controller could be reconnected and used to control the Andros.  
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To meet this interoperability constraint, the JAUS control system mimicked the serial 

control stream of the native controller.  To achieve this, the control stream and 

initialization string were reversed engineered from the output of the native controller; 

however, the specific information pertaining to the Andros control data bytes may not be 

disseminated because of a nondisclosure agreement entered into between the Center for 

Intelligent Machines and Robotics (CIMAR) laboratory, located at the University of 

Florida, and Remotec, the manufacturer of the Andros platform.  

Figure 2-3:  Native Andros controller  

2.2 Andros JAUS Controller 

The Andros JAUS controller operates on a RabbitCore RCM3200 microcontroller, 

which utilizes a Rabbit 3000 microprocessor running at 44.2 MHz.  The RCM3200 has 

an integrated 10/100Base-T Ethernet port and six available serial ports for 

communications, as well as 44 configurable, 5 volt tolerant, I/O lines.  The RCM3200 

runs the Dynamic C Premier Version 7.33P3 real time operating system, in which the 

four basic JAUS components that comprise the Andros control system were coded.  
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These components are the Communicator, Node Manager, Primitive Driver, and Position 

System.  Libraries for each component were coded following the specifications found in 

the JAUS Reference Architecture. 

Component A

Node Manager

Communicator Communicator

Node Manager

Component B

Ethernet

Node A Node B

Figure 2-4:  Communicator-Node Manager component interaction 

Two JAUS components are directly responsible for all inter-component 

communications: the Communicator and the Node Manager.  As such, all nodes must 

support both a Communicator and a Node Manager component.  The Communicator 

allows for a single point of message entry into a subsystem while maintaining the data 

link between the subsystems.  The Andros Communicator uses a User Datagram Protocol 

(UDP) Ethernet connection for all communications.  The Node Manager component 

controls the routing of JAUS messages from one node to another.  As depicted in Figure 

2-4, a JAUS message is spawned within a component and then sent to the Node Manager, 

where the information pertaining to the destination component and destination node are 

attached to the message.  This fully defined JAUS message is now passed on to the 

communicator, which handles the transmission of the message to the proper node [10].  
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System
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Primitive Driver

Commanded
Wrench Effort

Vehicle Specific
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Figure 2-5:  Primitive Driver component interaction 

The Primitive Driver is a component, which accepts wrench commands from the 

System Commander and resolves them into vehicle specific actuator signals, thus 

initiating vehicle motion, as seen in Figure 2-5.  A wrench command consists of six 

propulsive and six resistive elements, with each set consisting of three linear force 

elements and three rotational moment elements.  These elements are then mapped to the 

three axis orthogonal coordinate system assigned to the vehicle, as shown in Figure 2-6.  

It is worth noting that every element of a wrench message is not necessarily applicable to 

every vehicle.  For example, a wheeled vehicle typically only requires three elements of 

the wrench message to control it properly: the resistive and propulsive linear forces in the 

x direction and the rotational moment in the z direction [10]. 
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The Position System is concerned solely with the determination of the vehicle’s 

global position and orientation and is necessary for the controller to perform accurate 

autonomous motion.  The vehicle’s position and orientation information is provided to 

the system upon receipt of a “Query Global Pose” command from either the Operator 

Control Unit or the Intelligent Primitive Driver. 

Ground Plane 

z 

y

x

Figure 2-6:  Vehicle orthogonal coordinate system 

2.3 Sensor Systems 

There are three main sensor systems used by the Andros system: the stair counter 

assembly, the auxiliary track position system, and the JAUS positioning system.  These 

systems provide feedback essential to the controller’s ability to execute behavioral 

commands. 

2.3.1 Stair Counter Assembly 

For the stair-climbing algorithms to function properly, the control system needs to 

know the relative position of the Andros on the stairs.  Typically, a Global Positioning 

System (GPS) would be used to provide location information in a robotic system.  

However, staircases are found in or around buildings, which generally limit the 

effectiveness of a GPS system; if satellite transmissions to the GPS receiver are blocked 
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by the structure housing the staircase, no position information will be acquired.  

Therefore, the stair counter assembly was designed to provide the relative position of the 

Andros upon the staircase by counting the number of stairs that the Andros has passed 

and is able to account for a step while moving in either direction upon a staircase.  For 

example, while climbing the stairs, the Andros passes four steps.  While attempting to 

move to the fifth step, a slippage error occurs and the Andros slides back down two steps.  

The stair counter is able to take this error into account and update the current position of 

the Andros upon the stairs.  In this case, the Andros would now be located at the second 

step. 

Figure 2-7:  Stair counter assembly 

The stair counter assembly consists of an array of two Sharp GP2D12 infrared object 

detectors.  These sensors take continuous distance readings up to 80 cm, have an update 

Infrared 
Sensors 

Shroud 

Mounting Plate 
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rate of 31.25 Hz, and are interfaced by the RabbitCore microcontroller through the use of 

a TLC545 Texas Instruments analog-to-digital converter.  The sensors are positioned one 

in front of the other with a one-inch offset and are orientated such that their detection 

beams are perpendicular to the long axis of the Andros, as seen in Figure 2-7; the sensors 

point directly at the plane upon which the Andros is situated.   Both sensors are shrouded 

to limit the amount of interference they may receive from ambient light sources and from 

each other.   
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Figure 2-8:  Infrared sensor stair representation 
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Each infrared sensor constructs a digital representation of the staircase as the Andros 

moves on it by determining the distance from the sensor to the staircase.  By assuming 

that the vehicle maintains a relatively constant velocity upon the staircase, the derivative 

of the stair data can be found by simply taking the difference of the current data point and 

the previous data point collected.  The second derivative of the stair data can now be 

obtained by taking the difference of the first derivative data.  Figure 2-8 depicts a sample 

stair data representation for a single infrared detector and the corresponding first and 

second derivative data.  The graph has been cropped to emphasize the range of pertinent 

data.  The data for the stair representation was simulated using a mathematical model of 

the sensor system, with the first and second derivative data obtained as outlined above.  

For the simulation, the rise of a single step was set at 8 inches, the run was set at 10 

inches, and a 0.1 second sampling rate was used.  Derivation of the mathematical model 

of the sensor system can be found in Appendix B. 

4 3 5 4 9 5 1 4

3 3 4 4 1 1
4 4 5 5 5 4
5 5 9 9 9 5

4 4 5 5 5 4

Sorted Data 

Filtered Data

Raw Data 

Figure 2-9:  Median filter example 
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To account for noise in the infrared detection signals, the first derivative data is 

filtered using a three element median filter before the second derivative is calculated.  

Median filtering is a non-linear filtering technique useful for the suppression of impulse 

noise and the smoothing of edges.  It works by taking a set number of data points and 

determining the mathematical median of them, which then replaces the data point.  An 

example of a three element median filter is shown in Figure 2-9.  In this example, three 

elements of the raw data are grouped together and sorted from low to high.  In this 

configuration, the median of the data is simply the middle of the three numbers, which is 

now the filtered data point [12]. 

The impulses in the second derivative data represent inflection points on the stairs; 

the interior concave stair corner will yield a positive impulse while an exterior convex 

stair corner will yield a negative impulse.  The system accounts for the stairs that the 

Andros has passed by detecting these impulses; if the impulse that is less than a given 

threshold value, a stair is counted.  The direction of travel upon the stairs, and therefore 

whether to add or subtract a stair to the total number counted, is determined by which 

sensor detected the impulse first.  If the front detector senses the impulse before the rear, 

then a stair is added.  If the rear detector senses the impulse before the front, then a stair 

is subtracted from the total.   

The computation of the first and second derivatives of the stair representation and the 

application of the median filter induces a delay in the detection of the stair inflections.  

Each of the derivative computations account for a one-cycle delay, while the median 

filter accounts for a three-cycle delay for a total delay of five cycles.  As the detectors are 
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polled at a rate of 20 Hz, the total delay time is 0.25 seconds between acquisition of the 

stair data and detection of a stair inflection. 

The stair counter assembly also has an “end of world” capability, meaning that it can 

be used for detection of drop-offs and ledges.  The system uses this function to determine 

the edge of a landing when descending a set of stairs.  The edge is detected by monitoring 

the output of the infrared sensors: the distances measured will remain constant until the 

sensor reaches a point when it is directly over the first step.  At this point, there will be a 

drastic change in the measured distance, which the system interprets as the edge of the 

landing and the beginning of the stairs. 

Figure 2-10:  Auxiliary track position system setup 
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2.3.2 Auxiliary Track Positioning System 

A Draw-Wire Transducer (DWT) sensor, manufactured by UniMeasure, is used to 

measure the angle of the Andros auxiliary tracks, one each for the front and rear tracks.  
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This sensor was used over other forms of angular sensors, such as rotary or optical 

encoders, because of its ease of setup and robust mechanical interface; there are no gears 

to become jammed with dirt or optical sensors to become inoperable because of grime.  

The DWT is simply a spring-loaded potentiometer connected to a three-foot long cable.  

The DWT sensor is attached to the chassis of the Andros, with the draw cable being 

wrapped around the auxiliary track drum once and then attached to it via a 10-32 cap-

head screw.  The setup is shown in Figure 2-10.   

A 5-volt reference voltage is applied to the sensor, which will return from 0 to 5 volts 

proportional to the length of cable drawn from the sensor.  The governing equation for 

the angle measured by the system is given in Equation 2-1, where Vhigh and Vlow are the 

upper and lower voltage bounds observed by the sensor and Vmeasured is the sensor 

voltage.   

The DWT sensors are interfaced by the RabbitCore microcontroller through the use 

of a TLC545 Texas Instruments analog-to-digital converter. 
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2.3.3 JAUS Positioning System 

As there is no GPS being used on the Andros system, the position system is 

comprised solely of a PNI Corporation TCM2-20 tilt-compensated module to update the 

Andros heading.  The compass heading of the Andros is filtered using a three element 

median filter, as previously described. 

The TCM2-20 is based upon PNI Corp.’s proprietary triaxial magnetometer system 

and its biaxial electrolytic inclinometer.  When level, it is accurate to within +/- 0.5 
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degrees RMS with 0.1-degree resolution.  This changes to +/- 1 degree RMS when the 

system is on an incline.  It communicates via a 38.6 kBaud, RS-232 serial connection and 

is set to run at a sampling rate of 20 Hz.   

The digital compass experiences a computation delay, much in the same manner as 

the stair counter system.  The three element median filtering produces a delay of three 

cycles, which corresponds to a delay of 0.15 seconds between acquisition of the heading 

data and realization of the filtered heading. 

2.4 Operator Control Unit 

In order for the Andros’ JAUS control system to be fully operable, an Operator 

Control Unit (OCU) was developed on a Gateway Solo 3350 laptop with the Linux 

Redhat 8.0 operating system.  A Netgear ME102 Wireless Access Point is used to 

establish a wireless Ethernet connection with the Andros JAUS controller.  The access 

point uses the IEEE 802.11b standard and transmits up to 11 Mpbs at 2.4 to 2.5 GHz. 

To be able to communicate with the JAUS components located on the Andros 

platform, the OCU needed to have information pertinent to the construction of the JAUS 

messages required to command these components available.  Therefore, JAUS message 

libraries for the Primitive Driver and Position System components were coded for the 

Linux operating system.  These libraries were adapted from code obtained from Dr. Jeff 

Wit of Wintech, Inc.  Communicator and Node Manager components were also coded for 

the Linux operating system to allow the OCU to interact with the Andros’ JAUS 

components.  All of the OCU components were developed in parallel with the 

corresponding components used on the Rabbit microcontroller.   

The OCU console was developed using the Linux Curses library.  This was chosen 

for the basis of the user interface because it allows for the easy manipulation of the 
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terminal display regardless of the terminal type used.  The Curses library only supports 

the use of single byte characters for display, but this was more than adequate to meet the 

needs of this OCU. 

 



 

CHAPTER 3 
INTELLIGENT PRIMITIVE DRIVER DEFINITION AND APPLICATION 

This chapter defines the Intelligent Primitive Driver (IPD) in terms of the JAUS 

architecture.  It then details the application of the Intelligent Primitive Driver to the 

Andros system. 

3.1 Component Definition 

For the IPD to be considered a JAUS component, it needs to fit into the rigid 

framework that comprises the architecture.  Therefore, the component will be defined as 

per the specifications detailed in the JAUS Reference Architecture: the component 

function, input and output messages, and description will be defined.  The component has 

been assigned the component identification number of 99 [10]. 

3.1.1 Component Function 

The Intelligent Primitive Driver component is responsible for the control of all 

indirect motion related actuators.  An indirect motion related actuator is any actuator that 

affects the ability of a platform to perform a commanded motion, but does not perform 

that motion itself.  For example, on the Andros robot, the front and rear auxiliary tracks 

are considered indirect motion actuators.  They are responsible for aiding the Andros in 

moving over rough and uneven terrain, but do not directly produce the motion.  

3.1.2 Component I/O 

The IPD will accept any of the JAUS core input and output messages, as well as the 

“Set Wrench Effort” and “Query Global Pose” commands.  These commands are as 
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defined in Appendix A.  Table 3-1 shows the user defined set of input and output 

messages and their corresponding unique command codes.  The input and output 

command sets will be completely defined in the “Input and Output Commands” section 

later in this chapter. 

Table 3-1: User defined input and output JAUS commands 
  Command Code Description 
  0x1FF1 Set Auxiliary Actuator 

0x1FF2 - 0x1FF9 Set Behavior X 

IN
 

0x3FF1 Query Auxiliary Actuator 
  0x3FF2 - 0x3FF9 Query Behavior X 

0x5FF1 Report Auxiliary Actuators 

O
U

T
 

0x5FF2 - 0x5FF9 Report Behavior X 
 

3.1.3 Component Description 

The IPD defines a command interface to control any available indirect motion 

actuators available upon a platform and any subsequent set of vehicle behaviors that 

would utilize these actuators.  Further, the IPD is able to issue wrench commands to a 

primitive driver component.  Automation of vehicle behaviors is accomplished to ease 

operator burden when the JAUS system is acting in tele-operational mode and to decrease 

high-level processor load when the system is acting in full-autonomous mode.  Similar to 

the Primitive Driver component, the IPD does not imply any specific platform in its 

definition and therefore is not completely defined until it has been applied to the control 

system of a particular platform.  

Figure 3-1 illustrates the most basic implementation of the Intelligent Primitive 

Driver into the JAUS system architecture.  The System Commander may send 

commanded wrench efforts to the primitive driver to initiate vehicle motion or any of the 
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aforementioned IPD command codes to the Intelligent Primitive Driver either to control 

an indirect motion actuator or start a vehicle behavior.  If a command is sent to begin a 

vehicle behavior, the IPD is able to send vehicle specific commands directly to the 

vehicle to control the indirect motion actuators.  Also, if vehicle motion is necessary to 

accomplish the behavior, the IPD may send commanded wrench efforts to the primitive 

driver component to incite vehicle motion. 

System Commander

Primitive
Driver

Commanded
Wrench Effort

Vehicle
Specific
Actuator

Commands

 

Intelligent
Primitive

Driver

Indirect Motion
Actuator

Commands

Subsystem

System

Commanded
Wrench
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IPD Command

Pose
System
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Data

Figure 3-1:  Intelligent Primitive Driver implementation 
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3.1.4 IPD Input and Output Messages 

This section will define the set of user-defined input and output messages used by the 

IPD. 

3.1.4.1 “Set Auxiliary Actuators” 

The “Set Auxiliary Actuators” message controls the indirect motion actuators 

available on the platform.  The command consists of four available linear actuator fields 

and four available rotational actuator fields.  Each field in the command may be mapped 

directly to a single actuator of corresponding type, either linear or rotational, for control.  

The interpretation of the numerical limits of the data fields allow for a wide array of 

actuator control.  The limits may be interpreted as a percentage of the maximum speed to 

move the actuator at, a percentage of the maximum distance to move the actuator to, or 

even interpreted as a blind forward/reverse/stop control message.  The data fields and 

vector-mapping table is for this command is found in Table 3-2. 

Table 3-2: “Set Auxiliary Actuators” command fields 
Field # Name Type Units Interpretation 

1 Presence Vector Unsigned Short N/A 
See Mapping Table that   

Follows 
2 Aux Actuator 1     Scaled Integer 
3 Aux Actuator 2 Short Integer Percent    Lower Limit: -100 
4 Aux Actuator 3        Upper Limit: 100 
5 Aux Actuator 4       
6 Aux Actuator 5     Scaled Integer 
7 Aux Actuator 6 Short Integer Radians    Lower Limit: -π 
8 Aux Actuator 7        Upper Limit: π 
9 Aux Actuator 8       

                  
Vector to Data Field Mapping for Presence Vector of Above Command 

Vector Bit 7 6 5 4 3 2 1 0 
Data Field 9 8 7 6 5 4 3 2 
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3.1.4.2 “Query Auxiliary Actuators” 

The “Query Auxiliary Actuators” message will cause the IPD to reply to the 

requesting component with a “Report Auxiliary Actuators” message.  The command field 

is shown in Table 3-3. 

Table 3-3: “Query Auxiliary Actuators” command field 
Field # Name Type Units Interpretation 

1 Presence Vector Unsigned Short N/A 
See “Report Auxiliary Actuator” 

Message 
 

3.1.4.3 “Report Auxiliary Actuators” 

The “Report Auxiliary Actuators” command message provides the receiving 

component with the current values of the commanded “Set Auxiliary Actuators” 

message.  The message data and mapping of the presence vector for the “Report 

Auxiliary Actuators” message are the same as the “Set Auxiliary Actuators” message, as 

seen in Table 3-2. 

3.1.4.4 “Set Behavior X” 

The “Set Behavior X” message is used to initiate the behavioral control algorithms, 

which are to be applied to the individual platform.  The message has been issued the 

command code range of 0xFFF2 to 0xFFF9 to allow for 8 vehicle specific behavior codes 

to be applied to the control system.  The corresponding behavior number, from 1 to 8, 

replaces the ‘X’ in the command code names in the code definition.  The data fields are 

delineated into 4 unsigned integers and 4 full integers, giving the design engineer a wide 

range of available variables to transmit any necessary behavioral data to the system, such 

as latitude and longitude, heading, or distance to travel.  As such, a specific behavior may 
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be defined by all, some, or none of the available data fields.  The data fields and vector-

mapping table is for this command is found in Table 3-4. 

Table 3-4: “Set Behavior X” command fields 
Field # Name Type Units Interpretation 

1 Presence Vector  Unsigned Short N/A 
See Mapping Table that 

Follows 
2 Behavioral Parameter 1          
3 Behavioral Parameter 2  Unsigned Int N/A  User defined fields   
4 Behavioral Parameter 3      
5 Behavioral Parameter 4     
6 Behavioral Parameter 5      
7 Behavioral Parameter 6      Float N/A User defined fields 
8 Behavioral Parameter 7       
9 Behavioral Parameter 8       

                
Vector to Data Field Mapping for Presence Vector of Above Command 

Vector Bit 7 6 5 4  3   2 1   0
Data Field 9 8 7 6  5   4 3   2 
 

3.1.4.5 “Query Behavior X” 

The “Query Behavior X” message will cause the IPD to reply to the requesting 

component with a “Report Behavior X” message.  The command field is shown in Table 

3-5. 

Table 3-5: “Query Behavior X” command field 
Field # Name Type Units Interpretation 

1 Presence Vector Unsigned Short N/A 
See “Report Behavior X”  

Message 
 

3.1.4.6 “Report Behavior X” 

The “Report Behavior X” command message provides the receiving component with 

the current behavioral data being performed by the platform.  The message data and 
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mapping of the presence vector for the “Report Behavior X” messages are the same as 

the “Set Behavior X” message, as seen in Table 3-4. 

3.2 Intelligent Primitive Driver Application 

An Intelligent Primitive Driver component must be applied to a vehicle to fully define 

the functionality of the behavioral and auxiliary actuator controls as no vehicle specific 

data is given in the JAUS definition of the component.  This section will discuss the four 

main areas that comprise the application of the IPD to the Remotec Andros test platform.  

These areas include: a discussion of the basis of the intelligence used in the control 

algorithms, the functionality of the component as it pertains to the Andros robot, an 

explanation of the program logic used in the controller, and an explanation of the stair 

motion algorithms used by the controller. 

3.2.1 Fuzzy Logic 

Professor Lotfi Zadeh at the University of California in Berkley developed fuzzy 

Logic in 1965 as a method of processing data by allowing partial set membership rather 

than classical precise set membership or non-membership.  Fuzzy Logic is based upon a 

human intelligence model; Professor Zadeh reasoned that people do not need precise, 

numerical information as input and yet they are capable of highly adaptive control.  As 

intuitive as this approach of control may appear, it was not applied to an actual control 

system until the 1970’s, mainly due to inadequacies in small-computer capabilities at the 

time [13]. 

Fuzzy Logic provides a simple way to arrive at a definite conclusion based upon 

vague, ambiguous, noisy or imprecise information.  The logic model focuses on what a 

system should do rather than trying to understand how the system works and concentrates 

on the problem rather than attempting to represent the system mathematically, which may 
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be impossible, especially in the case of nonlinear systems.  Fuzzy Logic incorporates a 

simple, rule-based “if X and Y then Z” problem solving control approach.  This approach 

relies upon an empirically based model, which is dependent on the design engineer’s 

control experience.  The system is inherently robust as it does not require precise inputs, 

can be designed to fail safely if an input is lost, and despite the possible wide variation of 

the input signal, the output is always a smooth control signal.  As the design engineer 

defines the rules that govern the system, the controller can easily be modified to improve 

or dramatically alter system performance.  Finally, any sensor that presents the controller 

with an indication of the system’s actions, regardless of sensor cost or precision, is a 

viable candidate for the fuzzy controller [13]. 

The fuzzy logic control model was applied to the four major intelligence functions of 

the control system: the stair protocol arbiter, the platform alignment controller, the 

auxiliary track controller, and the task used to realign the Andros upon the stairs after a 

slippage error has occurred.  Each of these functions will be discussed as they are 

encountered in the descriptions of the control algorithms to follow. 

3.2.2 Functionality 

To utilize the control capabilities of the Intelligent Primitive Driver, the command 

messages associated with the component must be completely defined to interact with the 

platform.  The “Set Auxiliary Actuators” command must be mapped to control the 

platform’s indirect motion actuators.  Vehicle behaviors must be assigned a control 

number corresponding to one of the available “Set Behavior” commands, the requisite 

control data for the behavior must be defined and assigned to the proper command 

variable and the behavioral algorithms themselves must be characterized and coded for 

use. 
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As shown in Table 3-2, the “Set Auxiliary Actuators” command message has eight 

assignable auxiliary actuators command fields.   Following this convention, the front 

auxiliary track of the Andros robot is denoted as “Aux Actuator 5” and the rear auxiliary 

track is denoted as “Aux Actuator 6.”  These fields were chosen as the auxiliary tracks of 

the Andros may be moved to a specific angle through the use of the Auxiliary Track 

Position System, described in Chapter 2.3. 

The behavioral controls of the IPD are used to control the motion of the Andros on a 

set of stairs, both ascending and descending.  The ascending motion behavior has been 

mapped to “Set Behavior 1” with the descending motion mapped to “Set Behavior 2.”  

Both behaviors use the same the control data variables, which have been assigned to the 

data fields shown in Table 3-6. 

Table 3-6: “Set Behavior” 1 and 2 control data 
Field # Name Description 

2 Behavioral Parameter 1 Rise of a Single Step (in.) 
3 Behavioral Parameter 2 Run of a Single Step (in.) 
4 Behavioral Parameter 3 Total Number of Steps 
5 Behavioral Parameter 4 Not Used 
6 Behavioral Parameter 5 Stair Heading (degrees) 
7 Behavioral Parameter 6 Not Used 
8 Behavioral Parameter 7 Not Used 
9 Behavioral Parameter 8 Not Used 

 

3.2.3 Program Logic 

Figure 3-2 depicts the logic flow diagram of the Intelligent Primitive Driver upon 

startup.  This diagram is only representative of the Intelligent Primitive Driver and not 

the JAUS system on the whole.  The receipt and execution of JAUS commands by 

standard components have been omitted because, for these instances, the controller 
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behaves in a manner consistent with a standard JAUS controller.  Upon startup of the 

Andros controller, the IPD enters a “ready” state and awaits the reception of an IPD 

command message.  The receipt of one of these commands causes the IPD to assume 

control of the Andros and execute the desired commanded function.   

Start Controller

Ready State

Command
Msg Recv’d?

Yes

No

Execute
Command

Command
Completed?

No

Yes

Figure 3-2:  Intelligent Primitive Driver logic flow diagram 

Upon receipt of a “Set Auxiliary Actuators” command, the IPD moves into the 

algorithm as shown in Figure 3-3.  The IPD uses the Auxiliary Track Positioning System, 

as outlined in Chapter 2.3, to determine the current angle of the auxiliary track.  Once the 

current angle has been determined, the algorithm checks to see in which of three possible 

fuzzy sets the current track angle lies: less than the desired angle, greater than the desired 

angle, or around the desired angle.  The IPD will determine the direction, if any, to rotate 

the track dependent upon which set the current track angle lies.  If the current track angle 
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is less than the desired track angle, the track is rotated counterclockwise.  If the current 

track angle is greater than the desired track angle, the track is rotated clockwise.  If the 

track angle is equal to the desired track angle, within an angular tolerance of +/-1 degree, 

the track is not rotated and the controller IPD returns to the ready state.  The two-degree 

total tolerance was determined heuristically based upon the maximum update rate of the 

controller, the precision of the Auxiliary Track Positioning System and the overall speed 

of motion of the auxiliary tracks while rotating.  This algorithm is followed independent 

of which auxiliary track is commanded to move.  
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Figure 3-3:  “Set Auxiliary Actuator” algorithm 
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Upon receipt of a “Set Behavior” command, the IPD executes the algorithm shown in 

Figure 3-4.  The IPD calculates the total dimensions of the stairs from the control data 

received along with the command, as seen in Table 3-6.  Through simple geometric 

equations, the IPD determines the total length, L, and pitch angle, β, of the stairs, as seen 

in Figure 3-5.  Next, the IPD aligns the heading of the Andros platform with the heading 

of the staircase.   
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Figure 3-4:  Opening sequence of “Set Behavior X” algorithm 
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The align platform function is another of the fuzzy logic functions.  It calculates the 

difference between the reported stair heading and the current heading of the Andros, 

obtained from the Andros’ onboard digital compass.  The absolute value of the difference 

is then compared against the defined fuzzy sets.  

Figure 3-5:  Stair data representation 

If the absolute value is greater than 90 degrees, the Andros is rotated at its maximum 

speed.  If the absolute value is between 90 and 60 degrees of error, the Andros is rotated 

at 75% of its maximum speed.  If the absolute value is between 60 and 25 degree of error, 

the Andros is rotated at 50% of its maximum speed.  Finally, if the absolute value is less 

than 25 degrees, the Andros is rotated at 25% of its maximum speed.  This function has 

an allowable angular tolerance of +/-4 degrees.  The direction of the commanded rotation 

is also dependent upon a fuzzy interpretation of the angular difference.  If the absolute 

value of the difference is less than 180 degrees and the actual difference is negative, the 

Andros is rotated counterclockwise at the desired speed.  If the absolute value of the 

difference is less than 180 degrees and the actual difference is positive, the Andros is 

rotated clockwise at the desired speed.  The direction of rotation relative to the actual 
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Total Run

Total Rise 

Run
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value of the difference is reversed if the absolute value of the difference is found to be 

greater than 180 degrees.  This ensures that the Andros takes the shortest route possible to 

reach the commanded heading.   

Once the Andros has been aligned, the IPD starts the skew alignment task.  This is a 

separate program thread, which runs parallel to the main stair control thread.  The 

purpose of the skew alignment task is to detect and counter any angular slippage of the 

Andros upon the staircase.  Slip detection is accomplished by monitoring the difference 

between the current heading of the Andros and the heading of the stairs, similar to the 

align platform function.   

Figure 3-6:  Skew alignment task correction 

Direction of 
Adjustment 

Direction of Slip 

If an angular slippage error is detected, the skew alignment task counters it by 

rotating the Andros in the direction opposite of the slippage. (Figure 3-6)  This, again, is 

a fuzzy logic task as the slippage error is grouped into broad sets of possible angular 

error.  If the error is greater than 5 degrees but less than 10, the Andros is rotated at 15% 
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of its maximum speed.  If the error is between 10 and 25 degrees, the Andros is rotated at 

25% of its maximum speed.  At greater than 25 degrees, the error begins to approach a 

non-recoverable state, and the Andros is stopped so that appropriate measures can be 

taken to safely move it off of the staircase.  Once the heading error is less than the 6 

degrees of angular tolerance, the Andros rotation is halted.  The linear motion control 

command of the Andros is never affected by the skew alignment task, except for the case 

in which the error is greater than 25 degrees, as the Andros’ embedded controller allows 

for both linear and rotational motion components to be commanded at the same time. 

After the skew alignment task has been spawned, the IPD begins the stair counter 

task.  The stair counter task uses the stair counter assembly, as described in chapter 2.3, 

to count the number of steps the Andros has successfully passed and also to account for 

any possible linear slippage error.  The number of steps must be counted to provide the 

IPD with the relative position of the Andros upon the staircase to trigger stair motion 

events, such as auxiliary track motions. 

The next step for the IPD to complete is to determine which stair protocol should be 

evoked.  This is accomplished by determining if the total length, L, of the staircase is less 

than or greater than the critical length.  The critical length is defined as 1.5 times the total 

length of the Andros.  If the total length is less than the critical length, protocol 1 is 

chosen.  If the total length is greater than the critical length, protocol 2 is chosen.  The 

reason for the demarcation between the two protocols is simple: a staircase with a total 

length equal to or less than the critical length simply does not have enough available 

length to adequately carry out the full range of stair climbing motions.  Also, the majority 

of the stair motions are meant to ensure that the Andros is stable upon the staircase and 
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that the tracks do not lose traction.  This is not a concern on short staircases as it is on 

longer ones.   

It should be noted that the portion of the stair motion algorithm, as seen in Figure 3-4, 

is the same for both the ascend and the descend behavior commands.  Also independent 

of the direction of travel upon the stairs is the protocol arbiter.  Protocol 1 is designated 

for control of the Andros on a set of stairs less than the critical length in both the ascend 

and descend commands, protocol 2 corresponds to control of the Andros on a set of stairs 

longer than the critical length in both the ascend and descend commands.  

Once the stair protocol has been carried out, the controller reverts back to its ready 

state and awaits further commands from the System Commander. 

3.2.4 Ascend Protocol 1 

This stair motion protocol deals with the situation in which the total length of the 

staircase is less than the critical length.  First, the front auxiliary tracks of the Andros are 

aligned with the angle of the stairs, β. (Figure 3-7a)  Then, the Andros is simply started 

up the staircase.  The protocol concludes as the Andros passes the last step of the 

staircase and is safely situated on the top landing, as seen in Figure 3-7c. 

3.2.5 Ascend Protocol 2 

The second ascend stair motion protocol deals with the situation where the total 

length of the staircase is longer than the critical length.  In this situation, the full range of 

control steps are necessary to ensure that the Andros makes it safely to the top of the 

staircase.  The first stage of the process is to align the front auxiliary tracks of the Andros 

with the angle of the stairs, β, and the rear auxiliary tracks parallel to the ground. (Figure 

3-7a)  This stage occurs while the Andros is preparing to climb the staircase, therefore 
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there are no steps associated with it.  In the next stage, the Andros is started up the 

staircase.  After two steps have passed, the front auxiliary tracks are aligned parallel with 

the line of the stairs, as seen in Figure 3-7b.  The Andros continues on in this third stage 

alignment until the last step of the staircase is reached. As this step is reached, the last 

stage is initiated.  The front auxiliary tracks of the Andros are moved downward to catch 

the Andros as it passes the apex of the stairs.  This can be seen in Figure 3-7c. 

 

Figure 3-7:  Ascend stair motion protocol: a) Align front auxiliary tracks with stair 
angle; b) Andros moving on stairs; c) Andros moving over apex of stairs 

c) b) 

a) 
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3.2.6 Descend Protocol 1 

As with ascend protocol 1, descend protocol 1 is evoked when the total length of the 

staircase to be traversed is less than the critical length.  The Andros is moved to the edge 

of the staircase and the front auxiliary tracks are moved downward to catch the Andros as 

it crosses the apex of the stairs, as seen in Figure 3-8a.  Next, the Andros is simply driven 

over the edge of the steps and the front auxiliary tracks are moved parallel to the ground 

plane.  Once the Andros has reached the floor level, it is moved away from the staircase. 

Figure 3-8:  Descend stair motion protocol: a) front auxiliary track moved to catch 
Andros; b) rear auxiliary track moved to push Andros over apex; c) align 
front auxiliary track with stairs; d) front auxiliary tracks moved to catch 
Andros at stair landing 

a) b) 

c) d) 
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3.2.7 Descend Protocol 2 

Descend protocol 2 occurs when the total length of the staircase to be traversed down 

is longer than the critical length.  The Andros is moved to the edge of the stairs and the 

front auxiliary tracks are moved downward to catch the Andros as it crosses the apex of 

the stairs.  (Figure 3-8a)  While this is occurring, the rear auxiliary tracks are moved 

downward to help rotate the Andros down to the plane of the staircase. (Figure 3-8b)  The 

Andros is moved forward until the main tracks come in contact with the stairs, as seen in 

Figure 3-8c.  The controller uses the “end of world” capability of the stair counter 

assembly to determine the edge of the stairs, as discussed in Chapter 2.3.  The Andros is 

moved further forward and rear auxiliary tracks are moved to a horizontal position.  The 

Andros is moved down the steps until the third to last step is reached.  Then, the front 

auxiliary tracks are moved to parallel to the ground plane, which allows the Andros to 

make an easy transition to the plane of the floor. (Figure 3-8d)  The Andros is then 

moved off and away from the staircase.  

 



 

CHAPTER 4 
TESTING AND RESULTS 

This chapter describes the testing of the individual subsystems associated with the 

Andros’ Intelligent Primitive Driver (IPD).  Testing procedures and results will be 

reported for the stair-counter assembly, the auxiliary track positioning system and the 

heading alignment controller.   

4.1 Stair-Counter Assembly 

4.1.1 Testing Procedure 

The stair counter assembly was tested to ascertain whether or not the concept would 

accurately count the number of stairs the platform has passed and therefore, be a viable 

addition to the positioning system.  The first step to accomplish this task was to calibrate 

the infrared sensors that the system uses.  This was done to correlate the values returned 

from the analog-to-digital converter (ADC), which are used to interface the Sharp 

GP2D12 infrared object detectors and the Rabbit RCM3200 microcontroller, to their 

corresponding distances.  To do this, a target was first placed a known distance away 

from the infrared sensor.  Then, one hundred readings of the value returned from the 

infrared sensor through the ADC were recorded and their average obtained.  The target 

was then moved to another known distance and the average value was again found.  This 

process was repeated for distances measuring 4, 6, 8, 10, 12, 14 inches.  The data points 

were plotted using Excel and several regression curves were applied to determine which 

type best fit the data.   It was determined that the non-linear power function shown in 
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Figure 4-1 best described the output.  The equation shown was then used in the code to 

convert the ADC readings to distances for the testing.  

y = 496.6x-0.9

R2 = 0.9974
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Figure 4-1:  Calibration data for Sharp GP2D12 infrared object detectors 

Once the infrared sensor had been calibrated, a method of gathering the test data from 

the staircase needed to be devised.  To accomplish this, a testing frame made from 80/20 

extruded aluminum framing system was constructed.  The 80/20 was chosen for this task 

as it was easily assembled and the extruded grooves were ideal for constraining the 

motion of the test sled along the major axis of the stairs.  The test sled housed the Rabbit 

microcontroller as well as one of the Sharp GP2D12 infrared object detectors to acquire 

the range data.  The sled was then tethered to a 12-volt gear motor to pull it along at a 
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relatively constant velocity.  The entire assembly was placed upon the stairs, as seen in 

Figure 4-2.  

Figure 4-2:  Stair-counter testing assembly 

The system recorded a reading of the range data from the surface of the staircase to 

the infrared sensor once every 50 milliseconds.  This delay was chosen, as it is longer 

than the 32-millisecond update rate of the infrared sensors and therefore ensured that no 

duplicate readings were accidentally recorded by the system.  The microcontroller then 

determined the first derivative of the data, applied a three element median filter to it, and 

then determined the second derivative.  A Dell Inspiron 8100 laptop computer then 

recorded this data set.  Communication between the Dell and the Rabbit were made via 

the 57.6-kBaud connection provided for diagnostic purposes by the microcontroller.  The 

test was run a total of ten times on two separate staircases. 

The stair-counter testing also had a secondary purpose: to empirically determine a 

second derivative threshold value for the stair-counter control code.  The stair-counter 
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code uses the second derivative values to determine if a stair has been passed and should 

therefore be counted.  However, detecting a single second derivative value for this 

purpose is futile; a range of second derivative values that correspond to a stair edge may 

be encountered.  The system may also experience subtle negative second derivative peaks 

due to uneven motion of the Andros upon the stairs.  To account for all of this, the second 

derivative value is compared to a threshold value.  If the value is less than the threshold, 

it is determined to be a stair edge and is counted. 

4.1.2 Results 

The data collected from the stair-counter testing rig was placed into an Excel 

spreadsheet for graphing purposes.  The data was analyzed to determine when the second 

derivative of the stair representation occurred with respect to the recorded inflection 

point, or outside edge, of the stairs.   

Figure 4-3a illustrates the first set of sample data from the acquired from the testing.  

The dark blue line represents the detected outline of the staircase, while the red line 

represents the calculated second derivative of this data.  Clearly visible are the two large 

negative impulses, each one corresponding to one of the stair peaks shown.  As designed, 

each impulse is logged 0.25 seconds after the stair peak is experienced.  The same is true 

of Figures 4-3b and 4-3c; each one has two large, negative impulses that occur 0.25 

seconds after their corresponding stair peaks are detected.  Also, in each of these figures, 

the negative impulses are less than –0.2, while none of the tertiary negative impulses 

approach this value.  Therefore, this was determined to be the optimum threshold value 

for the system to use.  
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b) Stair Data Representation and 2nd Derivative Data, Sample 2
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a) Stair Data Representation and 2nd Derivative Data, Sample1
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c) Stair Data Representation and 2nd Derivative Data, Sample 3
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Figure 4-3:  Stair-counter data: a) sample 1, b) sample 2, c) sample 3 
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4.2 Auxiliary Track Positioning System 

4.2.1 Testing Procedure 

The setup for the auxiliary track positioning system testing had two steps.  First, the 

maximum and minimum values returned to the system by the Draw Wire Transducer 

(DWT) were obtained.  These values are used in conjunction with Equation 2-1 to 

convert the measured DWT value to an angular measurement.  The maximum value 

occurs when the auxiliary track has been rotated to its topmost point, while the minimum 

value occurs when the auxiliary track has been rotated to its bottommost point; these 

points correspond to 150 degrees and 0 degrees, respectively.  At each of these two 

points, one hundred values of the DWT were taken and then an average value was 

obtained.   

Figure 4-4:  Plumb compass attached to Andros auxiliary track 
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The second step in the setup was to affix a plumb compass to the auxiliary track so 

that an independent angle measurement of the position of the track could be made.  A 

plumb compass is comprised of a needle, weighted at the bottom, along with an 

adjustable faceplate.  By attaching the body of the plumb compass to a structure, the 

relative angle of the structure with respect to ground may be found when the structure is 

rotated.  The Andros auxiliary tracks were rotated to their bottommost point and the 

adjustable face of the plumb compass was then adjusted such that the compass needle 

pointed to 0 degrees.  In this configuration, the compass needle pointed to 150 degrees 

when the auxiliary tracks were rotated to their topmost position, which corresponds to the 

measurement convention utilized by the controller.  Figure 4-4 illustrates the plumb 

compass attached to the Andros’ auxiliary track. 

To test the commands for the auxiliary track positioning system, the Operator Control 

Unit (OCU) was used to send the experimental JAUS message, “Set Auxiliary 

Actuators,” to the Andros’ JAUS controller, along with a commanded angular position of 

the auxiliary track.  The initial set of commanded angles were used to determine the 

minimum allowable tolerance that could be used by the system without the system 

becoming unstable.  In this case, the system would be unstable if the controller 

continually reversed the direction of the auxiliary track in an attempt to move the track to 

the desired angle and be within the given tolerance.  The minimum allowable tolerance 

for the system was found to be +/- 1 degree.  Following this, another set of “Set Auxiliary 

Actuators” commands were sent to the system and the commanded angle, the angle 

returned by the DWT sensor, and the angle read off of the plumb compass were recorded. 
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4.2.2 Results 

Figure 4-5 shows a plot of the controller commanded halt angle and the actuator halt 

angle versus the commanded angle sent to the controller from the OCU.  The controller 

commanded halt angle is the angle returned to the controller from the DWT sensor at the 

instant that the controller issued the halt rotation command.  The actuator halt angle is the 

angle read from the plumb compass and corresponds to the angle of the auxiliary track 

after the rotation has actually stopped.  Both sets of data points have a linear distribution 

across the entirety of the available range of motion, as illustrated by the applied trend 

lines and their respective R2 values.  The controller commanded halt angle and the 

actuator halt angle are identical at 0 degrees and 150 degrees because there are physical 

stops at these points of rotation on the Andros frame. 
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Figure 4-5:  Controller commanded halt angle and actuator halt angle versus operator 
commanded angle 
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Figure 4-6 depicts a plot of the error between the commanded angle sent from the 

OCU and the controller commanded halt error and the actuator halt angle.  The controller 

commanded halt error is the error between the commanded angle and the auxiliary track 

angle at the instant that the controller issued the halt command and is recorded from the 

DWT sensor.  The actuator halt error is the error between the commanded angle and the 

auxiliary track angle after the track actually stops and is recorded from the plumb 

compass.  The average error value returned from the DWT sensor is 0.5 degrees with a 

standard deviation of 0.3, whereas the average error value returned from the plumb 

compass is 3.4 degrees with a standard deviation of 2.2.   

Figure 4-6:  Controller commanded halt error and actuator halt error versus operator 
commanded angle 
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4.3 Heading Alignment Controller 

4.3.1 Testing Procedure 

The first step necessary to test the heading alignment controller was to calibrate the 

PNI Corporation TCM2-20 digital compass.  A serial connection was established 

between the digital compass and a Dell Inspiron 8100 laptop computer and the digital 

compass was placed into polling mode.  Then, the compass was given the command to 

start its calibration cycle and the Andros was slowly rotated in a circle for approximately 

four minutes.  Once this was completed, a series of “Set Behavior 1” commands were 

sent from the OCU to the Andros JAUS controller, along with the desired heading.  The 

JAUS controller was coded such that the “Set Behavior 1” command initiated the heading 

alignment code.  The first series of tests were administered to determine the minimum 

allowable tolerance value that the system could accept without the system becoming 

unstable.  In this situation, the system would be unstable if the controller continually 

reversed the rotation of the Andros in an attempt to move the Andros to the desired 

heading.  From these initial tests, the allowable tolerance for the system was found to be 

+/- 4 degrees.  After this was completed, another set of “Set Behavior 1” commands were 

sent from the OCU and the commanded heading, compass heading, and final Andros 

heading were recorded.  The compass heading is the value that the digital compass last 

reported to the controller to illicit a stop rotation command.  The final Andros heading is 

the compass measure of the heading of the Andros when the rotation actually stops. 

4.3.2 Results 

Figure 4-7 depicts a plot of the controller commanded halt heading and the vehicle 

halt heading versus the desired heading sent from the OCU.  The controller commanded 

halt heading is the heading returned to the controller at the instant that the controller 
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issues a stop vehicle rotation command.  The vehicle halt heading is the heading of the 

vehicle when the vehicle actually stopped its rotation.  Both sets of data have a linear 

distribution across the entire range of rotation, as illustrated by the applied trend lines and 

their respective R2 values.   
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Figure 4-7:  Controller commanded halt heading and vehicle halt heading versus 
operator commanded heading 

Figure 4-8 depicts a plot of the controller commanded heading error and the vehicle 

heading error versus the desired heading sent from the OCU.  The controller commanded 

heading error is the error between the desired heading and the heading of the vehicle 

when the controller issues a stop rotation command.  The vehicle heading error is the 

error between the desired heading and the heading of the vehicle when its rotation is 

actually stopped.  The average error value for the controller heading is 2.8 degrees with a 
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standard deviation of 0.8, whereas the average error value for the final Andros heading is 

5.9 degrees with a standard deviation of 1.7.   
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CHAPTER 5 
CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

This research focused on the development of the Intelligent Primitive Driver (IPD), 

an experimental, low-level, intelligence component for the Joint Architecture for 

Unmanned Systems (JAUS).  Three objectives were necessary to accomplish this task.  

First, the IPD had to meet the criteria of a fully defined, standard JAUS component.  

Second, a testing platform had to made JAUS compliant and the functionality of the IPD 

had to be applied to the testing platform.  Finally, the intelligence components of the IPD 

that were applied to the testing platform had to be tested. 

A standard JAUS component is defined through four criteria: the function of the 

component, the accepted input and output messages that the component may handle, and 

the full description of the component.  In these terms, the IPD was fully constrained to 

the JAUS architecture.  The purpose was defined as being responsible for the control of 

all indirect motion related actuators.  A full set of input and output messages were 

defined to meet the JAUS message standards.  The component description defined the 

implementation of the IPD into the JAUS architecture, set the IPD’s unique component 

identification number at 99, and discussed the specifics of the IPD’s functionality. 

A Remotec Andros robot was chosen as the testing platform because of the indirect 

motion actuators located on the chassis and its complicated behavioral controls, namely 

stair-climbing.  A complete JAUS controller was developed specifically to be used by the 
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Andros platform; an Operator Control Unit (OCU), Primitive Driver, Node Manager, 

Position System and Communicator components were coded for both the Rabbit 

RCM3200 microcontroller with the Dynamic C operating system and the Gateway Solo 

3350 laptop with the Linux Redhat 8.0 operating system.  The Rabbit was used as the 

Andros’ JAUS controller, while the Solo 3350 was used as the OCU.  The Intelligent 

Primitive Driver was applied to the Andros platform: the IPD’s capability to control 

indirect motion actuators were mapped to the auxiliary tracks of the Andros and the 

behavioral control commands were mapped to the stair ascending and descending 

procedures.  The proprietary Andros control stream was reverse engineered from the 

native Andros controller and then applied to the Primitive Driver and Intelligent Primitive 

Driver.  As such, the Andros’ JAUS controller was able to accept and interpret JAUS 

commands and incite the Andros to act upon these commands accordingly.  The 

controller, as mounted on the Andros platform, can be seen in Figure 5-1. 

Figure 5-1:  Controller mounted on Andros platform 
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The intelligence components of the Intelligent Primitive Driver were tested to ensure 

that they adequately performed the desired control function.  A testing frame was 

constructed to constrain the motion of a sled housing one of the Sharp GP2D12 infrared 

object detectors so that the stair-counter assembly could be tested.  From the data 

gathered from the system, it was shown that the negative second derivative impulses 

could be observed by the system and that they did indeed lag the detection of the outside 

stair edge by 0.25 seconds, as designed.  The auxiliary track positioning system was 

tested to determine if the final angular placement of the auxiliary tracks coincided with 

the desired angular command.  It was found that the average error value for the controller 

commanded halt angle was 0.5 degrees with a standard deviation of 0.3, whereas the 

average error value for the actual auxiliary actuator position was 3.4 degrees with a 

standard deviation of 2.2.  The minimum allowable tolerance for this control system was 

+/- 1 degree.  The heading alignment controller was tested to determine if the final 

heading of the Andros coincided with the desired heading command.  It was found that 

the average error value for the controller commanded halt heading was 2.8 degrees with a 

standard deviation of 0.8, whereas the average error value for the actual halt heading of 

the Andros was 5.9 degrees with a standard deviation of 1.7.  The minimum allowable 

tolerance for this control system was +/- 4 degrees.  Both of these control systems 

performed as designed and returned favorable data when the limitations inherent to the 

Andros platform were taken into account. 

The discrepancies between the DWT and plumb compass error in the auxiliary track 

positioning system and the final heading and compass heading error in the heading 

alignment controller are a direct manifestation of the limitations of the Andros system.  
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As discussed in Chapter 2, the maximum update rate of the Andros control stream is 5 

Hz.  In terms of autonomous computer controllers, 0.2 seconds is a relatively long 

amount of time.  In both the auxiliary track positioning system and the heading alignment 

controller tests, the controller commanded a halt of system motion that was not acted 

upon until at least 0.2 seconds later.  This fact translated into an average difference of 2.9 

degrees for the auxiliary track positioning system and an average difference of 3.1 

degrees for the heading alignment controller.  Therefore, when the controller believes it 

has reached the desired command position and has thus stopped the motion of the 

Andros, the Andros is in actuality continuing to move.  It is for this reason that the 

Andros stair motion behavior has been broken down into its component parts and these 

parts have been tested individually, instead of simply testing the Andros stair motion 

controller in its entirety; it is entirely within the realm of possibility that the Andros 

would incur a non-recoverable, fatal error when attempting to negotiate a staircase even 

though the controller recognized the error and attempted to correct it. 

The Andros is able to negotiate a set of stairs when controlled by a human operator 

with a more reasonable expectation of a successful conclusion than with the JAUS 

controller for two reasons, though it is still a very difficult and complicated task.  First, in 

terms of human control, 0.2 seconds is a relatively long amount of time.  Second, the 

human operator has both control experience and predicate knowledge of the system.  

Therefore, the human operator can make predictive assumptions concerning the stair 

motion process that the JAUS controller is unable to make.   For example, the human 

operator can take into account the type of stair to be traveled upon, the condition of the 

Andros’ tracks, and the amount of traction that the Andros is exhibiting when actually on 
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the stairs to make corrections to the stair motion process.  With this incarnation of the 

IPD, these predictive capabilities are not present. 

5.2 Future Work 

To increase the controllability of the Andros-IPD system, upgrades need to be made 

to several of the subsystems.  First, and most importantly, the Andros embedded 

controller should be updated to a more modern control scheme.  The outdated controller 

and its 1200-Baud connection should be replaced by a modern microcontroller utilizing a 

secure Ethernet connection protocol, such as the Transmission Control Protocol (TCP).  

This replacement would solve the control problems, which currently inhibit the system.  

When making this update, the current drive motors and auxiliary track positioning motors 

should be replaced with motors that have integrated rotary encoders.  This would serve 

two purposes.  First, the encoders located on the driver motors could be utilized to add 

dead-reckoning capability to the current position system.  With this, specific information 

concerning the total movement of each individual track could be collected and used for 

more exact vehicle placement.  Second, the encoders on the auxiliary track positioning 

motors could replace the Draw Wire Transducers (DWT) currently used to acquire 

auxiliary track position.  The DWT sensors work very well, but are susceptible to 

environmental conditions and hazards; the internal encoders would not have this potential 

problem.  The Intelligent Primitive Driver should be modified to include adaptive control 

capabilities to the stair motion algorithms.  Concepts of neural networks could be applied 

to the controller to give it the ability to learn from stair motion trials.  This would allow 

the system to adapt the stair motion algorithms to work more efficiently on different 

types of stairs.  For example, the controller could determine if an auxiliary track should 
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be moved at a different point during the stair motion algorithm or change the correction 

speeds used to correct the Andros if it slips on the staircase. 

Finally, the Intelligent Primitive Driver should be applied to other JAUS compliant 

platforms and further application testing should be performed.  In doing this, the viability 

of the component could be completely explored and documented.  After this, the 

component could be presented to the Working Group of the Joint Architecture for 

Autonomous Systems (JAUS) for the formal inclusion of the IPD into the Reference 

Architecture.  

 



 

APPENDIX A 
STANDARD JAUS MESSAGES 

This Appendix contains information pertaining to the “Set Wrench Effort” and 

“Query Global Pose” standard JAUS messages, as well as a list of the core JAUS 

message set. 

A.1 Query Global Pose 

The command code for this message is defined as 0x2402 and causes the receiving 

component to respond with a “Report Global Pose” message.  Table A-1 depicts the data 

field assignments for the “Query Global Pose” message [10]. 

Table A-1: “Query Global Pose” data field (used from JAUS: Reference Architecture              
Specification, pg. 93) 

Field # Name Type Units Interpretation 

1 Presence 
Vector 

Unsigned 
Short N/A See Report Global Pose 

Message 
 

 

A.2 Set Wrench Effort 

The command code for this message is defined as 0x0405 and controls platform 

mobility actuators by mapping the six propulsive and six resistive elements that comprise 

a wrench command to the mobility actuators of a vehicle.  Table A-2 depicts the data 

field assignments for the “Set Wrench Effort” message [10]. 
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Table A-2: “Set Wrench Effort” data fields (from JAUS: Reference Architecture 
Specification, pg. 80) 

Field # Name Type Units Interpretation 

1 Presence Vector Unsigned Short N/A 
See mapping 

table that 
follows. 

2 Propulsive Linear 
Effort X 

3 Propulsive Linear 
Effort Y 

4 Propulsive Linear 
Effort Z 

5 Propulsive Rotational 
Effort X 

6 Propulsive Rotational 
Effort Y 

7 Propulsive Rotational 
Effort Z 

Short Integer Percent 

Scaled Integer 
Lower Limit 
= -100 
Upper Limit 
= 100 

8 Resistive Linear 
Effort X 

9 Resistive Linear 
Effort Y 

10 Resistive Linear 
Effort Z 

11 Resistive Rotational 
Effort X 

12 Resistive Rotational 
Effort Y 

13 Resistive Rotational 
Effort Z 

Byte Percent 

Scaled Integer 
Lower Limit 
= 0 
Upper Limit 
= 100 

 

Vector to Data Field Mapping for Above Command 
Vector Bit 15 14 13 12 11 10 9 8 
Data Field R R R R 13 12 11 10 
Vector Bit 7 6 5 4 3 2 1 0 
Data Field 9 8 7 6 5 4 3 2 

“R” indicates that the bit is reserved. 
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A.3 JAUS Core Message Set 

Table A-3 shows the core set of JAUS messages and their corresponding command 

codes [10]. 

Table A-3: JAUS core message set 
Code Description 
0x01 Set Component Authority 
0x02 Shutdown    
0x03 Standby    
0x04 Resume    
0x05 Reset    
0x06 Set Emergency   
0x07 Clear Emergency   
0x08 Create Service Connection 
0x09 Confirm Service Connection 
0x0A Activate Service Connection 
0x0B Suspend Service Connection 
0x0C Terminate Service Connection 
0x0D Request Component Control 
0x0E Release Component Control 
0x0F Confirm Component Control 
0x10 Reject Component Control 

 

 



 

APPENDIX B 
STAIR COUNTER MATHEMATICAL DEVELOPMENT 

The ability to count the number of steps the Andros has passed is critical to the ability 

of the Intelligent Primitive Driver to perform its designed task.  As discussed in Chapter 

3, the current location on the stairs of the Andros is used to trigger controlled events 

during the stair climbing procedure.  To ensure that this was done as accurately as 

possible, the optimum deployment angle for the infrared sensors needed to be determined 

so that the stair peaks and their corresponding second derivative impulses were easily 

observable by the system. 

Figure B-1:  Stair representation 
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The stair representation used for this development has been drawn relative to the 

plane of motion of the Andros, as shown in Figure B-1.  This reference frame is 

appropriate as the sensor array moves along a path parallel to the plane of motion of the 

Andros and the measured distances are relative to this plane, and not to the ground plane.  

The single stair representation shown is defined by its rise, run, and the angle, β, which is 

determined through basic geometry and is constructed of two lines that are perpendicular 

to each other at their single point of intersection.  As the stair representation is 

constructed of two linear equations, one for the rise and one for the run, two separate 

equations for the distance, d, must be developed.  The distance, d, is the range distance 

measured from the infrared sensor to the profile of the stair.   

Figure B-2:  Stair runner model 
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Figure B-2 shows the model used for the development of the equation for the 

distance, d, as it applies to runner of the stair.  The first step in determining d is to find 

the point of intersection between the stair runner linear equation and the line of action of 

the sensor, (x0, y0).  As the y-axis component of this point is constrained to be at y0, x0 

can easily be found by solving the equation of the line.  Using this as the point of origin, 

the distance, a, can be found to the point (x,y), which corresponds to the current location 

of the sensor.  This distance is given as:           

    ( ) ( )2
0

2
0 yyxxa −+−=                             (B-1) 

Now that the distance, a, has been acquired, the perpendicular distance, f, can be found 

by the equation: 

        βsinaf =                    (B-2) 

Through the similar triangles concept, the angle, β, is shown on the two locations of 

Figure B-2.  The angle, γ, is the user-defined angle of the infrared sensor.  Therefore, the 

intermediate angle, τ, may be found, which then leads to the angle, φ, by the equation: 

      βγφ −−= 90                   (B-3) 

The distance, d, is now simply: 

        φcos
fd =                    (B-4) 

Figure B-3 shows the model used for the development of the equation for the 

distance, d, as it applies to riser of the stair.  Again, the first step is to find the point of 

intersection, (x0, y0), between the stair riser linear equation and the line of action of the 

sensor.  Again, as the y-axis value is constrained to be y0, x0 can be found by solving the 
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equation of the line.  Using this as the point of origin, the distance, a, can be found to the 

point (x,y), which corresponds to the current location of the sensor.   

Figure B-3:  Stair riser model 

The equation for this distance is shown in Equation B-1.  Through the similar 

triangles concept, the angle, β, is shown on the two locations of Figure B-3.  The angle, γ, 

is the user-defined angle of the infrared sensor.  Using γ and β, the angle, τ, may now be 

found by: 

         βγτ −=                    (B-5)  

a

d f

β

τ
γ

(xo,yo)
(x,y)

Stair Riser

X

The distance, f, is defined as: 

            βcosaf =                    (B-6) 

Finally, the distance, d, may be found by: 

             τcos
fd =          (B-7) 
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The two equations for the distance, d, and the stair data representation were placed 

into an Excel spreadsheet for analysis.  From this, Figure B-4 was obtained.  As shown in 

the figure, if the user-defined sensor angle, γ, is less than 90 degrees relative to the line of 

action of the sensors, the stair edge is skewed to the left and the risers are more 

pronounced over the range of the stair data.  If γ is greater than 90 degrees to the line of 

action of the sensors, the stair edge is skewed to the right and the runners are more 

pronounced over the range of the stair data.  Therefore, it was determined that γ should be 

90 degrees, or perpendicular to the line of action of the sensors, as this case is neutral and 

shows no preference to either the risers or to the runners of the stair data.  As the stair 

edges are more pronounced in the neutral case, so to will the second derivative impulses 

be more pronounced and more easily observed by the system.  
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